

**Totally Focused. Totally Independent.** 

# Technical Guide

ECO46 4 A



The world's largest independent producer of alternators 1 – 5,000kVA





### Standards

Alternators are designed and produced within an ISO 9001 environment. The entire series is manufactured according to, and complies with, the most common specifications such as CEI 2-3, IEC 34-1, EN 60034-1, VDE 0530, BS 4999-5000, NF 51.111, CAN/CSA-C22.2 No14-95-No100-95, NEMA MG 1-2011, ISO 8528-3. Other standards such as UL1446, UL 1004/4 and /B are available on request.

## Windings and Performances

All windings are 2/3rds pitch to eliminate triplen harmonics within the voltage waveform and to avoid excessive neutral currents in certain parallel operating conditions. A fully interconnected aluminium or copper damper cage is supplied on the rotor of all models (excluding the ECP3 series).

- 12 wire reconnectable:
  - 50Hz 380V to 440V and 220/110V to 240/120V (de-rates may apply at certain voltages)
  - 60Hz 380V to 480V and 220/110V to 240/120V (de-rates may apply at certain voltages)
- 6 wire reconnectable:
  - 50Hz 380V to 440V and 220V to 240V (de-rates may apply at certain voltages)
  - 60Hz 380V to 480V and 220V to 240V (de-rates may apply at certain voltages)

| VAC                                | Stan                             | dard                                                                  | Special (dedicated)              |                                  |                                  |                                  |  |
|------------------------------------|----------------------------------|-----------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
| Winding<br>Configurations          | 12 wire<br>Reconnectable         | 6 wire<br>Reconnectable                                               | 380V and 600V<br>60Hz            | 690V 50/60Hz                     | 220-240V 1ph<br>50Hz             | 220-240V 1ph<br>60Hz             |  |
| ECP3 to ECO38                      | Std                              | Option                                                                | Option                           | Option                           | Option                           | Option                           |  |
| ECO40 to ECO46                     | Std                              | Option                                                                | Option                           | Option                           | Option (to<br>ECO40)             | Option (to<br>ECO40)             |  |
| Insulation materials               | Class H                          | Class H                                                               | Class H                          | Class H                          | Class H                          | Class H                          |  |
| High efficiency                    | Std                              | Std                                                                   | Std                              | Std                              | Std                              | Std                              |  |
| High motor starting                | >300%                            | >300%                                                                 | >300%                            | >300%                            | >300%                            | >300%                            |  |
| THD (Total Harmonic<br>Distortion) | Typically <3.5%<br>full load L-L | Typically <3.0%<br>full load L-L                                      | Typically <3.5%<br>full load L-L | Typically <3.5%<br>full load L-L | Typically <4.5%<br>full load L-N | Typically <4.5%<br>full load L-N |  |
| Interference suppression           |                                  | VDE 0875 G/N/K, EN61000-6-3, EN61000-6-2, others available on request |                                  |                                  |                                  |                                  |  |

## Winding Protection

There are various degrees of protection for the windings following the standard impregnation process, as can be seen here. The TOTAL+ butadienic black flexible coating is recommended for arduous applications.

| Winding Protection:   | STANDARD | STANDARD+ | GREY   | GREY+  | TOTAL+ |
|-----------------------|----------|-----------|--------|--------|--------|
| ECP3                  | Std      | Option    | Option | Option | Option |
| ECP28 and<br>ECP32    | -        | Std       | Option | Option | Option |
| NPE32, ECP34 to ECO46 | -        | -         | Std    | Option | Option |







Grey treatment (marinization) on the left, TOTAL+ treatment shown on the right. The EG43 grey varnish, is an high temperature insulating enamel that forms a tough and flexible film, with excellent moisture and chemical protection. It is water and oil proof, and also protects windings from abrasion. It is applied spraying an over coating layer over the impregnated winding, or dipping the stator in a varnish barrel for superior treatments

The TOTAL+ is a protection system that makes Mecc Alte special. It is the ultimate winding treatment that offers truly superior performances when the environment is really harsh, or the application very demanding. The TOTAL+ is also extremely resistant to the particle abrasion as it adsorbs the impacts.

### Protection for Environment

In addition to protection on the windings themselves, the alternators can have increased ingress protection. Standard levels are IP23 with further upgrades available to include inlet filters, IP43 and IP45: 7% de-rates apply on inlet filters and IP43 protection. 20-30% de-rates apply for IP45 depending on alternator model.

Additional air exit louvres (called IP23+) are optionably retrofittable in the overall ECP32 to ECO 46 range, in order to comply to the most strict marine regulations.



### Construction

The robust mechanical structure withstands up to 5G in any direction and 9G vertically and its design permits easy access to the connections and components during routine maintenance check-ups. The mechanical design has used the most advanced FEM techniques. The materials used are: FEP12 steel for the frame, C45 steel for the shaft and cast iron or aluminum pressure die cast for the end-brackets: fans are aluminum die casted either nylon fiber glass loaded, UL compliant materials. Rotors are dynamically balanced according grade 2.5 of ISO 1940-1.



### Terminals and Terminal Box

Easy access to regulators is assured through a pull out drawer or a drop down panel to allow safer adjustment. Large terminal boxes allow easy access of power cables, in the ECO43 and ECO46 higher power ranges the terminal allow the convenient choice of power cable or busbar connection with versatility of entry and connection. Current transformers are available as an option on series ECO 40, 43 and 46 with single or dual output.





### **Excitation and Regulation Systems**

All ECP/ECO series have MAUX auxiliary winding to power the digital regulator. Both DSR and the DER1 are available to connect to PC through the DxR2 USB interface and DxR TERMINAL software to interrogate/download alarms & settings for analysis or for cloning other regulators. DER2 has got an integrated USB connection and can be connected to the PC without any optional connection boards. More settings such as LAMS, digital RAM based synchronous external control and soft start are obtainable through the DxR connection. Simple analogue potentiometers are available for the more usual adjustments.

| Excitation Systems                     | DSR   | DER1    | DER2    |
|----------------------------------------|-------|---------|---------|
| ECP3 to ECO38                          | Std   | Option  | Option  |
| ECO40 to ECO46                         | -     | Std     | Option  |
| Parallel Operation                     | V     | V       | √       |
| Mains Parallel                         | V     | V       | √       |
| 3 Phase Sensing (rms)                  | -     | V       | V       |
| Accuracy                               | +/-1% | +/-0.5% | +/-0.5% |
| Remote Voltage Control                 | V     | V       | √       |
| Alarm Log                              | V     | V       | V       |
| Analogue and Digital Configurable      | V     | V       | V       |
| LAMS (Load Acceptance V/f)             | V     | V       | V       |
| APO (Active Protection Output)         | V     | V       | V       |
| Soft Start                             | V     | V       | √       |
| High dynamic response                  | -     | -       | √       |
| USB connection without external boards | -     | -       | √       |

For a given motor start duty a smaller machine may be selected - also enhanced by low sub-transient reactance values for non-linear loads. The whole range from 6.5 to 3400kVA is capable of >300% sustained short circuit current for up to 20 seconds.



### Optional PMG3

PMG3 can be retro fit or factory fit on ECO 40, 43 and 46 series. This smart MeccAlte design allows an easy fix kit, through a tapered cone coupling and a simple replacement of the rear air louvre. PMG3 is also available on ECO 38, when ordered from the factory.

The complete AVR range is fully compatible with both MAUX and PMG3 systems, this minimises spare part management and flexibility of stock as one AVR suits all applications. The PMG3 is delivering the same amount of kVA available with the MAUX.



### Accessories

Additional optionals can be fit on our alternator series, such as PTC thermistors or PT100 both on windings and bearings, space heaters, high and low profile of terminal boxes (on most series), air filter clogging sensors, rotating diode bridge failure sensor (RBD), power factor controller for parallel operation (PFR/2), parallel devices (standard from ECO 40), air filters, IP43 and IP45 protections, marine IP23 + protection for SOLAS requirements and many others.

### Deration coefficients

|                   |      | Ambient temperature (Celsius) |      |      |      |      |
|-------------------|------|-------------------------------|------|------|------|------|
| Altitude (meters) | 25   | 40                            | 45   | 50   | 55   | 60   |
| ≤ 1000            | 1.07 | 1                             | 0.96 | 0.93 | 0.91 | 0.89 |
| > 1000 ≤ 1500     | 1.01 | 0.96                          | 0.92 | 0.89 | 0.87 | 0.84 |
| > 1500 ≤ 2000     | 0.96 | 0.91                          | 0.87 | 0.84 | 0.83 | 0.79 |
| > 2000 ≤ 3000     | 0.9  | 0.85                          | 0.81 | 0.78 | 0.76 | 0.73 |

### Notes on short circuit curves

three phase short circuit curves values as a function of the rated voltage.

The indicated coefficients have to be used to correct the The indicated coefficient have to be used to correct the three phase short circuit curves values as a function of the type of short circuit voltage.

| <i>50</i> | Hz     | 60      | Hz     |
|-----------|--------|---------|--------|
| Voltage   | Factor | Voltage | Factor |
| 380       | 0.93X  | 415     | 0.85X  |
| 400       | 1X     | 440     | 0.90X  |
| 415       | 1.04X  | 460     | 0.95X  |
| 440       | 1.10X  | 480     | 1X     |

|              | 3 phase | 2 phase L-L | 1 phase L-N |
|--------------|---------|-------------|-------------|
| Istantaneous | 1X      | 0.87X       | 1.30X       |
| Minimum      | 1X      | 1.80X       | 3.20X       |
| Sustained    | 1X      | 1.50X       | 2.50X       |
| Max Duration | 20 sec. | 10 sec.     | 4 sec.      |

All the curves are shown for series or parallel star connection at 400V 50 Hz or 480V 60 Hz. If the unit is reconnected from series to parallel star, the additional coefficient is 2X. From series star to series delta, it is 1.72X. From series star to parallel delta. it is 3.44X.



## General characteristics

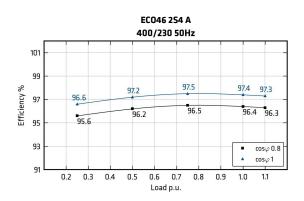
| Pole number            | 4         | Insulation class  | н         |
|------------------------|-----------|-------------------|-----------|
| Phase number           | 3         | Protection class  | IP23      |
| Number of wires        | 12        | NDE Bearing type  | 6324      |
| Execution              | Brushless | DE Bearing type   | 6330      |
| Regulator type         | DER-1/A   | Maximum Overspeed | 2250      |
| Winding pitch          | 2/3       | Altitude          | ≤ 1000    |
| Code voltage reference | T0405P3   | Balancing         | IS01940-1 |

## Ratings

| 400V - 50Hz @ 125/40°C - 0.8 PF - Standard |     |             |  |
|--------------------------------------------|-----|-------------|--|
|                                            |     | EC046 254 A |  |
| Rated power                                | kVA | 1800        |  |
|                                            | kW  | 1440        |  |

## Reactance & Time constants

|                       |                                        | _   | 550.445.1   |
|-----------------------|----------------------------------------|-----|-------------|
|                       | urated (ref. EN60034-4)                |     | ECO46 2S4 A |
| Xd                    | Direct-axis synchronous reactance      | %   | 273,7       |
| X'd                   | Direct-axis transient reactance        | %   | 25,9        |
| X"d                   | Direct-axis subtransient reactance     | %   | 12,7        |
| Χq                    | Quadrature-axis synchronous reactance  | %   | 170,6       |
| X'q                   | Quadrature-axis transient reactance    | %   | 170,6       |
| X"q                   | Quadrature-axis subtransient reactance | %   | 28,9        |
| <b>X</b> 2            | Negative-sequence reactance            | %   | 18,1        |
| Χo                    | Zero sequence reactance                | %   | 4,06        |
| Satur                 | ated                                   |     |             |
| Xd                    | Direct-axis synchronous reactance      | %   | 227,2       |
| X'd                   | Direct-axis transient reactance        | %   | 21,5        |
| X"d                   | Direct-axis subtransient reactance     | %   | 10,5        |
| Χq                    | Quadrature-axis synchronous reactance  | %   | 141,6       |
| X'q                   | Quadrature-axis transient reactance    | %   | 141,6       |
| X"q                   | Quadrature-axis subtransient reactance | %   | 24          |
| <b>X</b> <sub>2</sub> | Negative-sequence reactance            | %   | 15          |
| Χo                    | Zero sequence reactance                | %   | 4,06        |
|                       |                                        |     |             |
| Kcc                   | Short circuit ratio                    |     | 0,38        |
| T'd                   | Transient time constant                | sec | 0,258       |
| T"d                   | Subtransient time constant             | sec | 0,023       |
| T'do                  | Open circuit time constant             | sec | 10,4        |
| Τα                    | Armature time constant                 | sec | 0,029       |

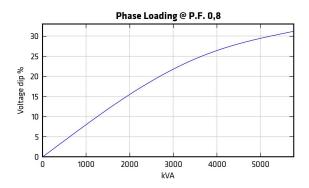

## Additional information

| lo Excitation current at no load       | Α | 0,8                                        |
|----------------------------------------|---|--------------------------------------------|
| Ic Excitation current at full load     | Α | 3,2                                        |
| Overload                               |   | 1 hour in a 6 hours period 110% rated load |
| Overload per 20 sec.                   | % | 300                                        |
| Heat dissipation                       | W | 53776                                      |
| Telephone Harmonic Factor - THF        | % | <2                                         |
| Waveform Distors.(THD) full load LL/LN | % | 3,4 / 3,3                                  |
| Waveform Distors.(THD) no load LL/LN   | % | 2,9 / 2,8                                  |



## Efficiencies @ 50 Hz

| Models      |   |      | 400/230V 50Hz |      |      |      |  |  |
|-------------|---|------|---------------|------|------|------|--|--|
|             |   | 0.25 | 0.5           | 0.75 | 1    | 1.1  |  |  |
| ECO46 2S4 A | % | 95,6 | 96,2          | 96,5 | 96,4 | 96,3 |  |  |






## Transients voltage

400V - 50Hz







In order to scale transient curves as a function of a power factor or voltage if not indicated, please proceed as follows:

Power Factor coefficient corrector (PFCC), to be used on power factor 0.6 curves:

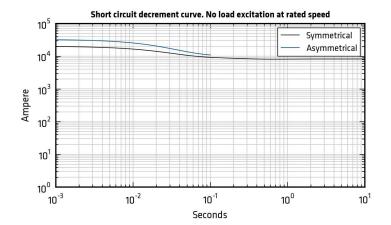
PFCC=sin(ARCcos (PFnew))/0.8

Example. The PFCC at power factor 0.3 is 1.192 [ PFCC= sin(ARCcos (0.3))/0.8 ]. This means that the voltage fall at a given power at pf 0.3 is equivalent to the one that can be read on the pf 0.6 curve if the load is considered 1.192 times bigger (19% higher value. ).

In this example, a 100 kVA load insertion at pf 0.3 is equivalent in voltage fall to a 119kVA load insertion at pf 0.6.

Voltage coefficient corrector (VCC):

VCC=(400/Vnew)2 if 50 Hz; VCC=(480/Vnew)2 if 60 Hz


Example. VCC at 415V 60 Hz is 1.338 [ VCC=(480/415)^2]. This means that the voltage fall at a given power at 415V is equivalent to the one that can be read on the power factor 0.6 curve if the load is considered 1.338 times bigger (33% higher value. ).

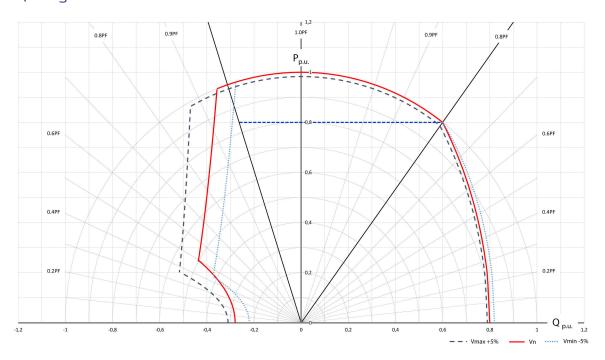
In this example, a 100 kVA load insertion at 415V is equivalent in voltage fall to a 133kVA load insertion at 480V.



## 50Hz Short circuit decrement curves - No load excitation at rated speed

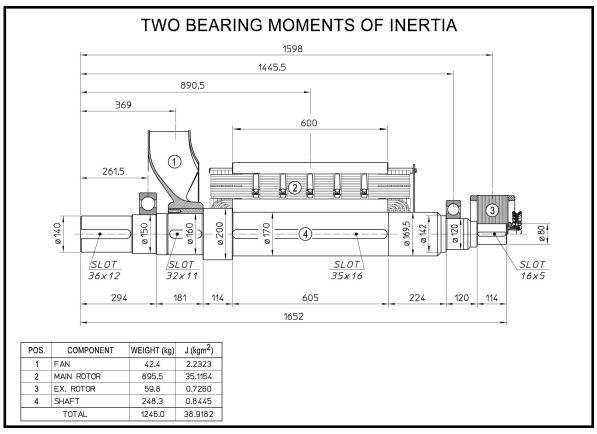
EC046 2S4 A

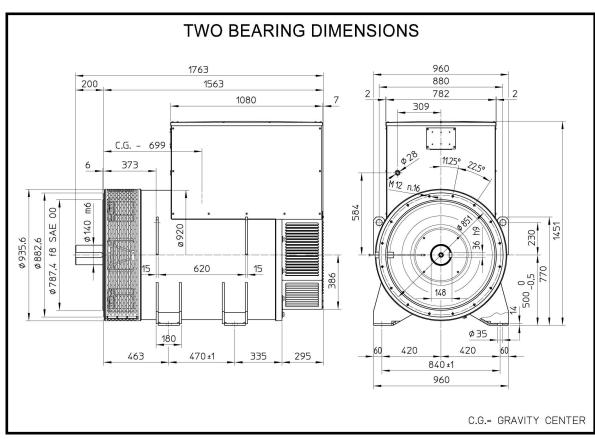



<sup>\*</sup>Please refer to tables at page 6



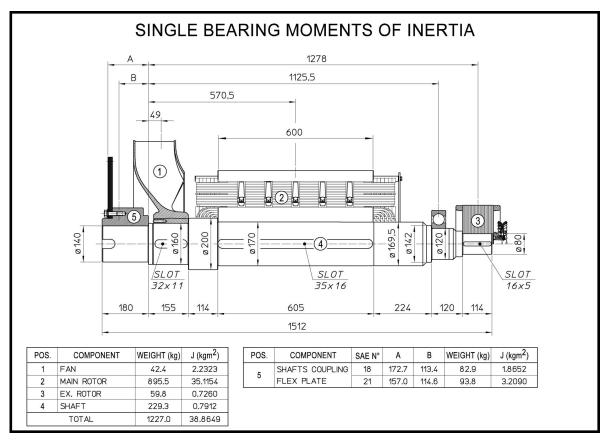
## Additional Characteristics

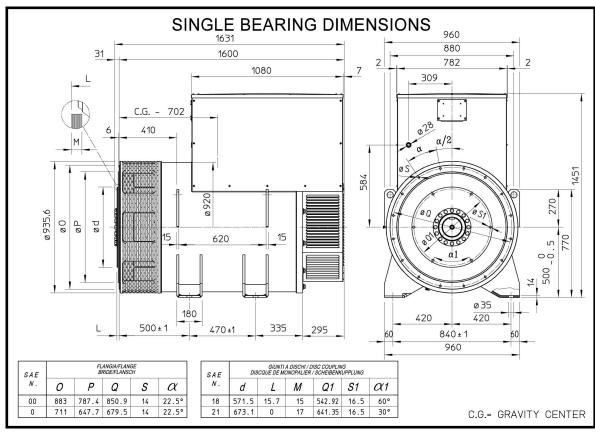

| Data                             |        | ECO46 254 A |  |  |  |  |
|----------------------------------|--------|-------------|--|--|--|--|
|                                  |        | 50 Hz       |  |  |  |  |
| Damper cage                      |        | Соррег      |  |  |  |  |
| Stator Winding Resistance (20°C) | Ω      | 0,004       |  |  |  |  |
| Rotor Winding Resistance (20°C)  | Ω      | 3,5         |  |  |  |  |
| Stator Exciter Resistance (20°C) | Ω      | 12,9        |  |  |  |  |
| Rotor Exciter Resistance (20°C)  | Ω      | 0,12        |  |  |  |  |
| Weight of complete generator     | kg     | 3560,0      |  |  |  |  |
| Unbalanced magnetic pull         | kN/mm  | 6,5         |  |  |  |  |
| Air flow                         | m³/min | 135,0       |  |  |  |  |
| Noise level at 1m/7m             | dB(A)  | 97/86       |  |  |  |  |


## PQ Diagram






## ECO46 2S4 A








### ECO46 2S4 A







| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |



### Mecc Alte SpA (HQ)

Via Roma 20 – 36051 Creazzo Vicenza – ITALY T: +39 0444 396111

F: +39 0444 396166

E: info@meccalte.it aftersales@meccalte.it

### **Mecc Alte Portable**

Via Roma 20 - 36051 Creazzo Vicenza - ITALY T: +39 0444 396111 F: +39 0444 396166 E: info@meccalte.it

aftersales@meccalte.it

### **Mecc Alte Power Products srl**

2 – 36075 Montecchio Maggiore (VI) – ITALY T: +39 0444 1831295 F: +39 0444 1831306 E: info@meccalte.it aftersales@meccalte.it

Via Melaro

### Zanardi Alternatori srl

Via Dei Laghi 48/B – 36077 Altavilla Vicenza – ITALY T: +39 0444 370799 F: +39 0444 370330 E: info@zanardialternatori.it

#### United Kingdom

Mecc Alte U.K. LTD 6 Lands' End Way Oakham Rutland LE15 6RF T: +44 (0) 1572 771160 F: +44 (0) 1572 771161 E: info@meccalte.co.uk

aftersales@meccalte.co.uk

### U.S.A. and Canada

Mecc Alte Inc.
1229 Adams Drive
McHenry, IL, 60051
T: +1815 344 0530
F: +1815 344 0535
E: info@meccalte.us
aftersales@meccalte.us

#### France

Mecc Alte International S.A.
Z.E.La Gagnerie
16330 ST.Amant de Boixe
T: +33 (0) 545 397562
F: +33 (0) 545 398820
E: info@meccalte.fr
aftersales@meccalte.fr

#### Spain

Mecc Alte España S.A. C/ Rio Taibilla, 2 Polig. Ind. Los Valeros 03178 Benijofar (Alicante)

T: +34 (0) 96 6702152

F: +34 (0) 96 6700103

E: info@meccalte.es aftersales@meccalte.es

Mecc Alte Generatoren GmbH Ensener Weg 21 D-51149 Köln T: +49 (0) 2203 503810 F: +49 (0) 2203 503796 E: info@meccalte.de aftersales@meccalte.de

### Far East

Mecc Alte (F.E.) PTE LTD

19 Kian Teck Drive

Singapore 628836

T: +65 62 657122

F: +65 62 653991

E: info@meccalte.com.sg

aftersales@meccalte.com.sg

#### China

Mecc Alte Alternator Haimen LTD 755 Nanhai East Rd Jiangsu HEDZ 226100 PRC T: +86 (0) 513 82325758 F: +86 (0) 513 82325768 E: info@meccalte.cn

aftersales@meccalte.cn

#### Australia

Mecc Alte Alternators PTY LTD
10 Duncan Road, PO Box 1046
Dry Creek, 5094, South
Australia
T: +61 (0) 8 8349 8422
F: +61 (0) 8 8349 8455
E: info@meccalte.com.au
aftersales@meccalte.com.au

#### ndia

Mecc Alte India PVT LTD Plot NO: 1, Sanaswadi Talegaon Dhamdhere Road Taluka: Shirur, District: Pune - 412208 Maharashtra, India T: +91 2137 619600 F: +91 2137 619699 E: info@meccalte.in aftersales@meccalte.in



www.meccalte.com